AUTHOR
TITLE

INSTITUTION
SPONS AGENCY PUB DATE GRANT NOTE

EDRS PRICE DESCRIPTORS

IDENTIFIERS

Merrill, Samuel III; Enelow, James M.
Decision Analysis for Minlticandidate Voting Systems. Applications of Elementary Decision Analysis to Political Science. [and] An Application of Voting Theory to Congress. Applications of Decision Theory and Game Theory to American Politics. iodules and Monographs in Undergraduate Mathematics and Its Applications Project. UMAP Units 384 and 386 . Education Development Center, Inc., Newton, Mass. National Science Foundation, Washington, D.C. 80
SED-76-19615-A02 61p.

MFOl Plus Postage. PC Not Available from EDRS. Answer Keys; *College Máthematics; Game Theory; Higher Education; Instructional Materials; *Learning Modules; *Mathematical Applications; Mathematical Models; *Matrices; *Political Science; *Politics; Problem Solving; Supplementary Reading Materials; Voting Decision Models; *Decision Theory

ABSTRACT

This document consists of two modules. The first studies a variety of multicandidate voting systems, including approval, Borda, and cumulative voting, using a model which takes account of a voter's intensity of preference for candidates. The voter's optimal strategy is investigated for each voting system using decision criteria under uncertainty (Savage regret and Laplace criteria) and under risk (espected utility). voting systems are compared with regard to the relative ease with which the voter can approximate his or her optimal strategy, the relative freedom of the voting system from offering superfluous strategies, and the empirical impact as determined by survey data. The second module is designed to help the user gain an understanding of how a simple theory of voting can be used to analyze strategic voting in Conqress. It is noted that voting in the United States Congress is frequently strategic. A model is presented to explain and predict voting on congressional amendments. Both units contain problem sets, and answers to these exercises are provided. (MP)

[^0]Finally, we will use survey data to study the " impact different voting systems might have had in' the 1972 Democratic Presidential primaries, assuming thac the_voters_used optimal strategies. -

2. EXANPLES OF' VOTING SYSTEUS

We begin by describing several possible vcting systems for single-vacancy, multicandidate efections. In each system considered below, the candidate with the most :votes wins. Some of these systems are in current use, others are not. To lend perspective to the analysis, we have deliberately included scme which may not be advisable under any circumstances. Our purpose is to -take a fresh look ${ }^{2}$ at the advontages and disadvantages of each, . unfettered if possible by preconceived notions.

Plurality. Each voter casts one vote for, one sandidate. This is the system most commonly used in the United States, and in parliamentary elec-

 tions in Canada and Great Eritain.cumulative Voting. Each voter may ayportion a set number of votes (the same for each voter) among the candidates. (When employed at present, this method is normally used when there are several vacancies, as for a corporate board of directors or for a multimember legislative district such âs 'in the Illinols House of Representatives. However, we. will consider here its effect were it applied in a single-vacancy race.) (See Brams (1975) for a more detailed discussion of cumulative voíing.)
Approval Voting. Each voter is permitted to cast votes for (i.e., approve) as nany candidates as he wishes, but he if alloved no nore than one vote per candidate. (See Brams (1978: ch. 6) for a description of the recent rescarch on approval voting.).
Cardinal Rating voting. Each voter rates the candidates on a common scale, say, from 0, to 10 , and casts a number of votes for each candidate determined by his rating.

Borda System. Fach voter ranks the candidates in order of preference and casts a number of votes for each equal to the number of candidates ranked below him. For example, if theric are five cancidates, each voter will cast $4,3,2,1$, and 0 votes for the various candidates. (Sce Eorda (1781) or D. Black (1958).)

Example. Suppose there are four candiçates: Aãans, Eianco, Cohen, and Delaney, and five voters J, $K, I_{1,} 11$, and i!. Table l iists possible rankirgs given by the voters for the four candidates, from most preferred
: (rank 1) to least preferred (rank 4). Exercises l-A refer to this table.

Table 1

Voters		Adams	Bianco		Cohen
J: Delaney					
J:		1	2	3	4.
K:	1	3	2	4	
L:	1	4	1	2	3
II:	3	2	1	4	
K:		4	2	3	1.

Exercise Determine the total vote for each candidate in Table 1 for the plurality system and for the Borda system:
Exercise 2. In Borda voting, each voter ranks tl:e candidates $\underset{f}{ } \mathbf{s t}$, 2ng, 3 rd , and 4 th. For the ranks specified in Table 1 deteraine the sum 0 the ranks for each candidate. Explain in what sense choosing as winner thet cancidate whose ranh sum is smallest is

- equivalent to the Borda systen.

Exercise 3. Suppose cach voter ranksithe candidates and then casts a number of votes for each candidate equal to the difference between the number of candidates ranked below that candidate ance the nuber of cancidates ranked above thet candidate: Calculate the vote tetale for the rarlis ir. Table 1 (note that sone vites cast are negative). Is this systen equivelent- to the Borda system?.

Exercise fe The rule for easting votes described in fxercise 3 permits the voter to express indifference between tun or more candidates, i.ẹ-, to pive two or nore candidates the same rank. If a voter prefers Adams, is indifferent between Bianco and Cohen, and considers Delaney'least desirable, determine the votes he casts.

Intermodular Description Sheet: . UMAP Unit 384

Title: DECISION ANALYSIS FOR' MULTICANDIDATE VOTING SYSTEMS
Author: Samuel Merrill, III
Department of Mathematics/Computer Science
Wilkes College
. Wilkes-Barre, PA 18703
Review Stagè/Date:
Classification: APPL ELEN DECISION ANALYSIS/POLITICAL SCI
Prerequisite Skills:

1. Handle simple algebraic inequalities.
2. Knowledge of elementary probability.

- 3. Manipulate finite summations (optional; used in some derivations).

Output Skills:

1. Become familiar with a variety of multicandidate voting systems, including approval, Borda, and cumulative voting.
2. Understand basic concepts in decision analysis, including Savage (minimax) regret and expected utility.
3. Apply these concepts to sirategic decisions made by voters in order to compare voting systems.
4. Use survey data to study the possible impact of various yoting systems.

Other Related Units:

Ther author wishes to thank Steven Brams of New York University and Robert Freysinger of Wilkes College'for helpful comments during the preparation of this module.

MODULES AND MONOGRAPHS In UndERGRADUATE

- NATHEMÅTICS AND ITS APPLICATIONS PROJECT (UMAP)

The goal of UMAP is to develop, through a comunity of users and developers, a system of instructional modules in undergraduate mathematics and its applications which may be used to supplement existing courses and from which complete coursesemay eventually be built.

The Project is guided by a National Steering Committee of mathemsticians, scientists, and educators. UMAP is funded by a grant from the National Science Foundation to Education Development Center, Inc., a poblicly supported, nonprofit corporation engaged in educational research in the U.S. and abroad.

PROJECT STAFE

Ross L. Finney
Solomon Garfunkei
Felicia DeMay
Barbara Kelczewski
Paula M. Santillo
Donna DiDuca
Janet Webber
Zachary Zevitas
NATIONAL ŚSEBRING COMMITTEE
W.T. Martin (Chair)

Steven J. Brams
Llayron Clarkson
Ernest J. Henley
William Hogan
Donald A. Larson
Wilifam F. Lucas
R. Duncan Luce

George M. Miller
Frederick Mostel.ler
Walter E. Sears
Arnold A. Strassenburg
Alfred B. Willcox

Director

Consertium Director

- Associate Director

Coordinator for Materials Production
Assistant to the Directors
Project Secretary
Word "Processor
Staff Assistant

This module was developed under the auspices of the UMAP Political Science Panel, G* Robert Boynton, Chair. The Project would like to thank Edwaṛd 2. Marrinan of the University of Dayton, Manus A. Midlarsky of the University of Michigan, and Edward W. Packel of Lake Forest College for their reviews, and all others who assisted in the production of this unit.

This material was prepared with the partial support of Nationa Science Foundation Grant No. SED76-19615 A02. Recommendations expressed are those of the author and do not necessarily reflect the -fiews of the NSF or the copyright holder.

M:I.T.
New York University
Texas Southern University
University of Houston
Harvard University
SUNY at Buffalo
Cornell University
Harvard University
Nassau Community College
Harvard University
University of Michigan Oress
SUNY at Stony Brook
Suny at Stony Brook
Mathematical Association of America
(C) 1980 EDC/Project UNAP All rights reserved.

ABSTRACT
The module studies a variety of multicandi- . date voting systems, including approval, Borda, and cumulative voting, 'using a model which takes account of a voter's intensity of preference for the candidates. The voter's optimal strategy is investigated for each voting system using decision criteria' under uncertainty (Savage regret and Laplace criteria) and under risk (expected utility). Voting systems are compared with regard to the relative ease with which the voter can appro\%imate his optimal strategy, the relative freedom of the voting system from offering superfluous strategies, and the empirical impact as detcrinined by survey data.。

1. InMRODUCTION ${ }^{\circ}$

Often a voter is confronted with an election in which more than two candidates are running for a single office. Current election rules in the united States and. seveíal other countries permit each voter to express a preference for only one of the candidates. This syeten of voting disregards the intensity of preferences felt -by the voters for the yarious candidates, except insofar as voters who are unconcerned may choose not to vote. In particular, it often awards a plurality to a candidate who is the first choice of a minority, while another candidate nay enjoy arproval by a larige' proportion of the electoraze and could, if elected, serve with a wicler méndate.

For example, in the 1970 llew York Senatorial race, there vere threce candicates: cttinger (nonocrat), Goodell (fepublicaroLiteral), and Euckley (Conservative). As it turned out, Buckley won with 39% of the vote, followed by Ottinger with 378, and Goodell with 24\%. To a large extent the two candidates perceived to be liberal (Ottinger and coodell) divicie' the vetes froi.: a common zonstituency. Many observers have sperulated that a majority of the voters preferred Ottinger to Buckley al 3 some have also contended thet a najority preferred Goodell to Buckley.

A variety of alternative voting systems have been proposed to determine the winner in a multicandrdate
election. For example, the vinner might be determined by sumaing ranks or satings of the candidates or each voter might be permitted to vote for more than one can-didate. For a number of such voting systems, we will investigate optimal strategies for a voter (e.g. . how he should rank or rate the candidates or how many cancidates he should vote for). This will be done under a variety of assumptions concerning the voter's :nowledge of the likely outconc of the election and will be based on a model which takes intc account the voter's intensity of preference for the candidates.

First we will consider voter stratesies (i.e.. . decision criteria) under uncertainty, by which we will mean that estimation of the likelihood of the candidates' success is not possible. We will determine oftinal stratesies based on the Suvaje criterion, which. mirimizes regret, and on the Laplafe criterion, which maximizes influence on the outcome under the assumption that all candidates are equally likely to contend for first place. Thesc concepts will be describec. in detail later.

Next we will assume that the vocer is capable of estimating the likelihood of the candidates' cuccess based on polls or other information. It will be assumed that the voter wishes to cast his ballot in such a way as themimize bis influence on the outcone of tine cicetion. Under this assumption we will show how the voter's optimal strategy in seeling this goal can be determined for a number of voting systems.

An inportant purpose of cornputir.g optimal stratefice lies in the evaluation of foctinc systers. iave will see, the firattical decerniration of an optinal strategy may not be an easy task for the voter. We suggest that an important criterien for society in choosing voting systems is the relative ease with which the voters can appro:imate their cptimal strategies. lie will demonstrate a qualitative aifference anong voting systems in regard to this criterion. Furthermore, it will be seen that, under the assumptions of the nodel developed; certain voting systems reduce to other knor:n systems when superfluous (nor-optimal; strategies are eliminated.

Finally, we will use survey data to study the impact different voting systems might have had in' the 1972 Democratic Presidential primaries, assuming that the voters_used optimal strategies. -

2. EXANPLES OFI VOTING SYSTEUS

We begin 'by describing several possible vcting systems for single-vacancy, multicandidate 'elections. In each system considered below, the candidate with the most votes wins. Some of, these systems are in current use, others are not. To lend perspective to the analysis, we have deliberately included scme which may not be advisable under any circumstances. Our purpose is to - take a fresh lookβ at the advantages and disacuvantages oE. each, .unfettered if possible by preconceived notions.

Plurality. Each voter casts one vote for, one
sandidate. This is the system most commonly usea
in the United States, and in parliamentary elections in Canada and Great Eritain".
Cumulative voting. Each voter may apportion a set number of votes (the same for each voter) ariong the candidates. (Hhen employed at present, this method is normally used when there are several vacancies, as for a corporate board of directors or for a multimember legislative district such âs 'in the Illinors House of Representatives. However, we, will consider here its effect were it ap--' plied in a single-vacancy race.) (See Brams (1975) for a moṭe detailed discussion of cumulative voiting.)
Approval Voting: Each voter is permitted to cast votes for (i.e., approve) as many candidates as he wishes, but he is alloved no more than one vote per candidate. (See Brams (1978: ch. 6) for a description of the recent research on approval voting.).
Cardinal Rating Voting. Each voter rates the candidates on a common scale, say, from 0 , to 10 , and casts a number of votes for each candidate determined by his rating.

Borda System. Fach voter ranks the candidates in order of preference and casts a number of votes. for each equal to the number of candidates ranted below him. For example, if there are five cancidates, each voter will cast $4,3,2,1$, and 0 votes for the various candidates. (See Eorda (1781) or D. Black (1958).)

Exanple. Suppose there are four candiçates: Noaner, Eianco, Cohen, and Delaney, and five voters J, K, I_{I} I1, anc i!. Table l iists possible rankirgs given by the voters for the four candidates, from most preferred
: (rank 1) to least preferred (rank 4). Exercises 1-A refer to this table.

Table 1

Voters	Adams	Bianco	Cohen	Delaney
J :	1	2	3	4
K:	1	3	2	4
L:	4	1	2.	3
H:	3	2	1	4
N:	4	2.	3	1.

Exercise_de Determine the total vote for each candidate in Table 1 for the flurality system and for the Borda system:
Exercise 2. In Borda voting, each voter ranks the candidates $\underset{6}{ }$ st, 2ng, 3rd, and 4th. For the ranks specified in Table 1 deteraine the sum of the ranks for each candidate. Explain in what sense choosing as winne: thet candidate whose ranh sum is snallest is
equivalent to the Borda syster.
Exercise 3. Suppose cach voter ranksithe cendidates and then casts a number of votes for each candidate equal to the difference between the number of candidates ranked below that candidiate and the number of cancidates ranked above that candidate: Calculate the vote tetals for the rariss ir. Table 1 (note that sore vetes cast are negative). Is this systen equivalent- to the Bordà system?.
Exercise 4 . The rule for easting votes described in exercise 3 permits the voter to express indifference between tun or nore candidates, i.e., to give two or more candidates the same rank. If a voter prefers Adams, is indifferent between Bianco and Cohen, and considers Delaney least desirable, deternine the votes he casts.
according fo the rule in Exercise 3. This system is called the ad,inted sorda_System.

- Suppose that the voters also rate the four cancidates. listed in Table 1 on a scale fron 0 to 10 (where 10 indicates most desirable), as given in Table 2. Note that these ratings are consistent-with the rankings given in the former table. Exercises 5 and 6 refer to Table 2.
'Table 2

-	Voters	Adems	Bianco	Cohen	Delaney
	ji:	10°	8	7	0
	K:	10	2	8	0
	L: *	0	10	8	7
	- M:	2	3.	10	0
	II:	0	9	6	10

Exercise 5. Assuming that these ratings are used in the cardiral measure system, deternine the vote totals for each candidate. How under approval yoting, assure that each yoter votes for (approves) each candidate he rates above 5. Detemine vote totals.
Exercise6. Supposè an election were conducted under curulative voting to $\hat{i l l}$ a single vacancy. Assuming that eack voter has 10 votes at his disposal, use the data ir Table 2 to decide how you feel each of the five voters should epportion his votes. Determine the vote totals for your appor fionments.

There are, of course, other voting systems which take account of voter preferences among the candidates. Ranked preferences may be usec to seek a Condorcet winner (if one exists), i.e., a candidate whe wolid vin a majority against each of the other candidates. This concept appeals to the sense of justice of many analysts, including in particular D. Rleck (1956, F. 66), who recommends tise of the Condorcet method, with the winner to be chosen by-tine Borda system if no Condorcet winner exists.

The Copeland methoa attempts to resolve this problem by awarding victory to the candidate who can win the most pairvise contests, thus assuring the election of the Condorcet winner if one exists. How-
ever, in the case of cither 3 or 4 candidates, if no Condorcet winner exists (and no two candidates receive e:actly the same number of votes) the Copeland method fails to determine a unique winner. For example, vhen tiare are 3 candidates, there are 3 pairwise coneests. If there is no Condorcet winner, no candidate can win as nany as 2 of ther. sence each uins one contest and che Copeland rels is inconclusive.

Exarcise 7. Show that for four condidates, if no Condorcet vinner exists (and no two candidates receive exactly the same number of votes) , the Cofeland nethod faiis to determire a unique vinner.

Another artenpt to retain part of the Condorcet principle is to hold a runoff between the top two contestants. forsever, this is nore expensive tian a one-stage votirg system and ray overlook a corpronise candidate who stands third on the first ballot. As a case"in poirst, most observers believe that Congressman nichard Boliing, a centrist who failed :o iake the runoff for $\mathrm{U} . \mathrm{S}$. House Democratic l:ajority Leader in 1976, could have ciefeated any of his opponents in a two-man race.

Still another modification of the Condorcet principle is called preferential votinc ior the single transferable vote or Hare syetcr when there is noric than one vacancy). (See Brams (1979).) AEter the voters rark the candidates, the candidate with the fewest first-pluce votes is eropped, ifs secenc-place votes are given to the renairirg cancidates. The process is repated until one candidate has a majority. preferéricicl vetirg, veteions of whicl: heve been usce in Irelanci (Rac (1972)) anc in Ann Arbor, richigan (Rrars (1979)), has disacivantages similar to those of the =unoff.

Whatevel the mer,its of these Condorcet-type alternatives, we will focus on the five veting systems described at the beginning of this section, as they are anenable to study through the nodel we are about to develop.

3. THE MODEL

We first express the model in terms of approval voting and then generalize it later to encompass a number of voting systems including the five specified above. We fix a particular voter (to be called the focal voter) and address the question: How should the focal voter rationally select the subset of candidates to vote for under approval voting? Assume there are K candidates c_{1}, \ldots, c_{K}, and that:
(A) The focal voter assigns a numerical rating f_{i} to candidate c_{i} so that the quantity $f_{i}-f_{i j}$ is intended to represent the utility or payoff to that voter of having candidate c_{i} elected instead of candidate c_{j}.
(B) The number of voters is large enough that the probability of an m-way tie (m > 2) is negligible, relativ̈e to that for a 2-way ${ }^{\text {bie. }}$
(C) The voter can exercise power only if his votes are decisive. By this we mean that for sone pair of candidates c_{i} and c_{j}, he can break a tie for first place (or produce such a tie) which would occur had he abstained. In this case, the voter receives a payoff of ($f_{i}-f_{i}$), provided that he votes for c_{i} but not c_{j}. The contingencies for which the focal voter has a chance to be decisive will be specified as the pairs $\left(c_{i}, c_{j}\right)$.
${ }^{1}{ }_{\text {If the tal }}$ vote received by candidates c_{i} and c_{j} from the other voters is even, say 100 , then the focal voter can be decisive only if the 100 votes are split $50-50$. In this case, if he votes for c_{i} but not $c_{j}, \quad c_{i}$ is elected; if he votes for c_{j} but not c_{i}, c_{j} is elected. If for example, he chooses the former, his payoff is (f_{i-} f_{j}). If the total vote from the other voters for c_{i} and c_{j} is odd, say 99, then the focal voter can be decisive if the 99 votes are split either (a) 49 for \dot{c}_{i} and 50 for c_{j} or (b) 50 for c_{i} and 49 for c_{1}. Assume that, in case of a tie in the final vote, a procedure is used which selects either candidate with equal probability. In case (a), if the focal voter votes for c_{i} but not c_{j}, then c_{i} is elected with probability $\frac{3_{2}}{}$; if he votes ror c_{j} but not c_{i}, c_{j} is elected. If he chooses the former, his payoff is $\frac{3}{2}^{2}\left(\mathrm{f}_{1}-\mathrm{f}_{j}\right)$. For case (b) a similar analysis leads torthe same payof. Thus his total expected payoff is $\left(f_{i}-f_{j}\right)$, just as before. For convenience, the language in the remainder of the module will reflect the case when the total vote from the other voters for c_{i} and c_{j} is even. See Brams and Fishburn (1979) for an alternative development leading to the same result as this note.

4. DECISIONS UNDER UNCERTAINTY:
 THE SAVAGE REGRET CRITERION

There are several commonly used decision criteria on which the voter cin base his decision concerning which candidates to vote for. some apply to decisions under uncertainty (where nothing is assumed known abour the relative likelihood of the various contingencies). Others apply to decisions under risk (where probabilities can be assigned to the relative likelihood of contingencies). We begin by considering two criteria for decisions under uncertainty: the Savage regret method and the Laplace methoci. (Luce anc Raiffa (1957: 280 and 298).)

The Savage regret method chooses that decision which minimizes the maximum regret over all contingencies which might be suffered for the given decision. Regret is computed relative to the best payoff that could be achieved for a particular contingency.

For example suppose there are 3 candidates denoted simply as A, B, and C, and that the focal voter rates them 10,7 , and 0 , respectively. We will refer to the set S of candiciates voted for as a strategy. We need only consider contingencies in which the focal voter is potentially decisive--that is, he can make or break a tie among the other voters. Such contingencies occur when a pair of candicates would be tied for first place or differ by one vote had the focal voter abstained. If, in this exariple, the pair consists of cancidates A and B, the contingency will be denoted by the symbol $A B$.

A payof matrix (see Table 3) is constructe \bar{G} in which each row crirosponds to a strategy and each column to a contingency. For example, if strategy (A) is chosen, and contingency $A B$ occurs, the focal voter assures by his ballot ε. vin for A insteac of B, so that his payoff is. $(10-7)=3$. Similarly, had he chosen the strategy (B, C) and the same contingency occured, he woula have assured a win for B instead of A (his vote for C vould have no effect), so his payoff would be $(7-10)=-3$.

Exercise 8. Construct a payoff matrix if the candidate ratings are 10,3 , and 0 , respectively.

-	AB	AC	BC
(A)	3	10	0
> ${ }^{(A, B)}$	0	10	7
d (A, C)	3	0	-7
\% (B)	-3	0	7
式 (B, C)	-3	-10	0
(C)	0	-10	-7

Payoff matrix
Table 3

Contingency

(A)
(A, B)
(A, C)
(B,C)
(C)

Contingency

AB	AC	BC	Fiaxinal Regret
0	0	7	7
3	0	0	3
0	10	14	14
6	10	0	10
6	20	7	20
3	20	14	20

Rearet matrix

Next we construct a regret matrix (see Table 3): each entry gives the regret suffered relative to the best payoff that could have been attained for the contingency corrresponcing to the entry. For example, if contingency $A B$ occurs, 3 is the best possible payoff so the regret is 0 for strategy ((A) or (A, C), but for strategy $\left(A_{0}, B\right)$ it is $(3-0)=3$ and for (B) it is $3-(-3)=6$.
In the final column of the regret matrix. we place the maximal regret for each strategy. The Savage method of minimal regret then chooses that strategy for which the maximal regr'et is smallest, in this case strategy (A, B).

For an arbitrary 3-candidate election, ve may assune, without loss of generality, that the focal voter rates candidates A, B, and C as l, r, and 0 where $12 r \geq 00^{\circ}$ (This is possible since strategic decisions do not depend on cranges of scale or position of the ratirgs.) payoff and regret matrices for this situation are given in fable 4. The stratesies have been numbered for convenience.

	Contingency			Contingency ${ }^{\text {- }}$				
	$A B$	A8	BC		ΔB	AC	BC	liaximal Begret
1: (A)	1-r	1	0	(A)	0	0	r	r
2: $\left(\begin{array}{l}1, B)\end{array}\right.$	0	1	r	($A, B)$	1-r	0	0	1-r
3: (A, C)	1-r	0	-r	(A, C)	0	1	2 r	
4: (F)	r-1	0	\underline{r}	(E)	$2(1-r)$	1	0	$2(1-r)_{r}^{r} \geq .5$
5: (E,C)	r-1	-1	0	(B;C)	2(1-r)	2	r	2
6: (C)	C	-1	-r	(C)	1-r	2	2 r	2

Payoff natrix

Regret matrix

Exercise 2. Compute the regret matrix and determine the Savage regret strategy for the data of Exercise 8.

Ile note that strategy 1 dominates strategy 3 in the sense that the payoff for strategy 1 is as good as or better than that for 3 for every contingency, and strictly better for at least one. In fact strategy 1 doainates the 3 ri, 5 th, and 6 th strategies in Table 3 , and strategy 2 dominates the 4 th, 5 th, and 6 th strategies. Hence we can restrict attention to the first two strategies, which are not dominated by any others. (n strategy that is unconinated is called acmissible.) The maxinum regret for strategy, (A) is r. The maximum regret for strategy (A, B) is l-r. Since under the Savage criterion ve wish tó minimize maxinum regret, the raticnal voter shoulc vote for oniy A if r < 5 , and for A and E if $r>.5$. (He should be indifferent between these two options if $r=.5$.

We nay rephrase this result as follows: according to the Savage regret criterion, if a voter participating ir an approval vating election rates the candicater or a scalc from 0.0 to 1.0 with the extreness of the scale used for the least preferred and most preferred candiàates, respectively, he shoulc cast votes for those candidates rated above .5. It turns out that. this result renair.s true for any number f of cancidates (see Appendix n for the derivation). Equivalently, the rule prescribes that the voter vote for each candidate
whose rating exceeds ($f_{1}+f_{n}$)/2, where the ratings are $\mathrm{f}_{1} \geq \mathrm{f}_{2} \geq \ldots \geq \mathrm{f}_{\mathrm{K}}$.

5. DECISIONS UNDER UNCERTAINTY: - THE LAPLACE CRITERION

We turn now to the second method for decisions under. uncertainty: The Laplace method treats all contingencies as equally likely and determines the expected value of the payoffs for each possible strategy under that assumption. This means that for each strategy we average the payoffs over all contingencies and then choose that strategy for which this average is largest.

For example, using the payoff matrix in Table 3, this expected value for strategy (A) is $(3+10+0) / 3=$ 4.33. The expected value for strategy (A, B) is $(0+10+7) / 3=5.67$. The other expected values for this matrix are $-1.33,1.33,-4.33$, and -5.67 , respectively. Clearly, the value is largest for strategy (A, B), so that is the Laplace strategy for this payoff matriy.

In general, if there are 3 candidates, we see from the payoff matrix in Table 4 that the expected value for strategy (A) is ($2-r$)/3, and for strategy (A, B) is $(1+r) / 3$. The expected values for the other four strategies are $(1-2 r) / 3,(2 r-1) / 3,(r-2) / 3$, and $(-r-1) / 3$. Each of the last four strategies is dominated by cither the first or the second strategy. Furthermore, strategy 1 is better than strategy 2 when ($2-r$)/3 > $(1+r) / 3$, i.e., when $r<.5$. Note that for three candidates, this is the same result we obtained using the Savage regret method.

We now apply the Laplace criterion to the case of K candidates. It will be convenient to drop our assumption that the candidates c_{1}, \ldots, c_{K} are 1 isted in order of the ratings by the focal voter. Also it will be sufficient simply to total the payoffs in each rov of the matrix, since the expected values are obtained by dividing these totals by the number of contingencies, which is the same for each strategy. For strategy (c_{1}), the total is

$$
\left(f_{1}-f_{2}\right)+\left(f_{1}-f_{3}\right)+\ldots+\left(f_{1}-f_{K}\right)
$$

For any strategy S (recall that S is simply a subset of $\left.\left(c_{1}, \ldots, v_{k}\right)\right)$, the total is
(s) $\quad U(S)=\sum\left(f_{i}-f_{j}\right)$,
where the sumation is over all $c_{i} \varepsilon s$ and $c_{j} \notin s$, we will call $U(S)$ the total utility for the strategy S.

Suppose tlat the focal voter has decided to vote ior the candidates ir set s ard vishes to lino: if he could impreve his total utility (i.e., obtain a better Larlace strategy) by also vetirg'for another cançidate c_{i}. He observes that $U(S)$ and $U\left(S U\left\{c_{i}\right\}\right)$ have the same summands in (4) except for those involying c_{i}. Thus

$$
\begin{gathered}
U\left(S U\left\{c_{i}\right\}\right)-U(S)=\sum_{c_{j} \notin S}\left(f_{i}-f_{j}\right)-\sum_{c_{j} E S}\left(f_{j}-f_{i}\right) \\
=K f_{i}-\sum_{j=1}^{K} f_{j} .
\end{gathered}
$$

Bence he will impreve total utility by voting for c_{i} precisely if

$$
\begin{equation*}
E_{i}>\quad \frac{1}{K} \sum_{j=1}^{K} f_{j} \tag{5}
\end{equation*}
$$

It follows that the focal voter zchieves maximal total utility by voting for the set of those candidates c_{i} for which (5) holds.

Thus the Laplace criterion tells the rational approval voter to vote for those candidates ithom he " rates above the average of all the candidates. The Savage regret criterion tells him to vote for those canciedates who rate above the averege of his first choice and hisolast choice. In many cases (and always for $K=3$) both criteria will lead to the same conclusion. For example, if there are fcur candidates, rated $10,8,7$, and 0 , then the average of all four is 6.25, whils the averace of the first and last choices is 5.0 . Using either criterion, the voter should vote for the top three. If the candidates are rated $10,3,2$, and 1 , then by either criterion the rational voter should vote only for his first choice. Note that the voter does not ir general increase his pover by votirg for as many candidates as possible. Rather, his greatest power occurs when he votes for somevhere in the
vicinity of one half of the candidates. (See Merrill (1980). Brams and Eishburn (1979), and Heber (1977).)

Prercise-10. Determine the optimal itrategy for both the Laplace and Savage regret criteria for each voter in Table 2. Determine the vining candidate in each case if optimal strategies are úsed.

6. DECISIONS UNDER RISK: EXPECTED UNILITY

- We now türn to decisions under risk and will seek. that strategy which maximizes the expected value of the payoff when a subjective probability is assigned to each contingency. We will refer to this criterion as" the method of sexpected utility.

Por example, suppose that there are 3 candidates and the focal voter estimates (on the basis of polls or other information) that c_{2} and c_{3} are the stronger candidates. Let us say he estimates the probability of contingency $\left(c_{2}, c_{3}\right)$ to be twice that of either $\left(c_{1}, c_{2}\right)$ or ($c_{1} ; c_{3}$). In general we denote by $p_{i j}$ the prohabil?ity, that in the voter's estimation there vould be a tie for first place between c_{i} and c_{j} given that there is such a tie between-some -pair of candidates (if the focal voter abstains). For convenience, let $p_{i i}=0$. Thus in our example, $\mathrm{p}_{12}=\mathrm{p}_{13}=.25$ and $\mathrm{p}_{23}=.5$. The expected values for strategies $\left(c_{1}\right)$ and (c_{1}, c_{2}) are (2r)/4 and ($1+2 r$)/4, respectively (see the payoff matrix in Table 4). The strategy (c_{j}) will be better if (2-r) $>(1+2 r)$, i.e., wher $r<1 / 3$. Hence the voter should vote only for c_{1} if $r<1 / 3$.
Ax: In general we define the experted utility for a strategy s by: ${ }^{\circ}$
(6) $\quad U(S)=\left[\left(f_{i}-f_{j}\right) p_{i j}\right.$
where again the summation is over all $c_{i} \varepsilon$ sind c_{j} S:-(The corresponding definition for plurality voting appears in McKelvey and Ordeshook (1972). Extension of formula (6) to other vating systems can be found in Herril! (1979 and 1980)). The Laplace criterion is, of course, the special case in which all $p_{i j}$ are equal. By an argument similar to that used before, we can show that a voter should include a çandidate c_{i} in his
strateg'́ if

$$
\begin{equation*}
\dot{E}_{i}>\sum_{j=1}^{!} G_{i j} E_{j} \tag{7}
\end{equation*}
$$

where

$$
q_{i j}=p_{i j} / \cdot \sum_{n=1}^{K} n_{i m}
$$

Exercise 11. (Exercises marked with an asterisk ($$) are intended for students with more mathematical background.) Derive Furmula (7).

Note that, generally speaking, the larger yaiues of $c_{i j}$ wili correspond to the stronger candidates, at least if more. tlian one has a good chance tc win. Hence the voter's rule of thumb in this setting would be to vote for candidates whom he rates above the average ofall of his ratirgs witl that average being weighted occording to the strength of the candidates.

7. COHPUTATION OF OPTIHAL STRATEGIES FOR GENERAL VOTING SYSTEIIS

We are nov: ready to apply the decision criteria we have developea to systems other than approval voting. To extend the nodel, we assume that the voter casts v_{i} votes for candidate c_{i} for $i=1, \ldots, k$, where the v_{i} must satisfy constroints peculiar to the voting system in question. We will treat ir detail only the method of expected utility, leaving the aprlication of the Savage regret criterioh to the exercises:

In this setting the definition of expected utiliky for a strategy $S=\left(v_{1}, \ldots, v_{K}\right)$ for the focal voter is:

$$
\begin{equation*}
u(\xi)=\sum_{v_{i}>v_{j}}\left(f_{i}-f_{j}\right)\left(v_{i}-v_{j}\right) p_{i j} \tag{8}
\end{equation*}
$$

where the probabilities $p_{i j}$ depend on the voting system in question. Note that $\left(v_{i}-v_{j}\right) p_{i j}$ represents the probability that the focal voter will be decisive, while ($f_{i}-f_{j}$) represents his pityoff if he is decisive.
"Our purpose is to show that for each of the five voting systems introdured in Section 2, the optimal strategy under the criterion of expected utility can be expressed in terms of a single index called the strategic value for a candidates for a particular voting system and focal voter, we define the strategic value $E\left(c_{i}\right)$.for candidate c_{i} by -
(9) $E\left(c_{i}\right)=\sum_{j=1}^{K}\left(f_{i}-f_{j}\right) p_{i j} \cdot$
The strategic value $E\left(c_{i}\right)$ repres

The strategic value $E\left(c_{i}\right)$ represẽ̃its the expected payoff accruing to one incremental vote for candidate c_{i}.
proposition_le If $S=\left(v_{1} \ldots, v_{K}\right)$ is a permissible strategy for the focal voter and voting system under study, and U is the expected utility funstion given in (8), then.

$$
\begin{aligned}
(10) \cdot U(S) & =E\left(c_{1}\right) v_{1}+E\left(c_{2}\right) v_{2}+\ldots+E\left(c_{K}\right) v_{K} \\
& =\sum_{i=1}^{K} E\left(c_{i}\right) v_{i}
\end{aligned}
$$

(See Appendix B for the proof.)
The following table gives the optimal strategy in terms of the strategic values $E\left(c_{i}\right)$ for each of the five voting systems described earìier.

TABLE 5
Yoting System
Plurality
©
Cunulative Voting
Vote for the, candidate for which $E\left(c_{i}\right)$ is largest. ${ }^{\text {F }}$

Approval Vctiong

Cardinal Rating

Borda System
Cast all votes for that candidate with the lingest $E\left(c_{i}\right)$.
${ }^{\circ}$ Vote for c_{i} if.and only if $E\left(c_{i}\right) \geqslant 0$.
Give the highest permitted rating if $E\left(c_{i}\right)>0$ and the loisest permitted rating if $E\left(c_{i}\right)<0$.
Rank the candidates in order of the values of $E\left(c_{i}\right)$.

To veriziy, for example, the optimal strategy fōr approval voting, note that by (10), if $E\left(c_{i}\right)>0$, voting for c_{i} increases $U(S)$. If $E\left(c_{i}\right)<0$, voting for c_{i} decreases $U(S)$, and if $E\left(c_{i}\right)=0$, voting for c_{i} has no effect on $U(S)$.

Exarcise 12. Verify the optimal strategies for the other four voting systems given in Table 5.
Exercise 13: For the cendidates in Table 2, assume that $p_{12}=F_{13}$ $=\mathrm{P}_{24}=p_{34}=1 / 6, p_{23}=1 / 3$, and $p_{14}=0$ (this represents a situation in wirich c_{2} and c_{3} are thought to be the strongest candidates). Determine the optimal strategies for each voting system for each voter according to the data in Table 2. Assuming thet optimal strctegies are used, determine the winning candidate for each voting system. For cumulative voting, assume ten votes per voter. (Hirt: First work out' a. table of values $E\left(c_{i}\right)$ for the five voters and four cancidates.)
Exercise 14. (This exercise nay involve outside. reading.) A strategy is called sincere if it reflects the true rankings of the * voter for the candicates, i.e.. if $v_{i} \geq v_{j}$ whenever $r_{i}>f_{j}$. For which voting systems is a voter more likely to find hid optimal strategy in conflict with his sincere strategy? In which systens is the choice of the winner most'sensitive tof replacement of sincere strategies by-optimal strategies? Use the example in Exprcise. 13 and/or any other examples to aid in your discussion. See Braps (1975) and Brams and Fishburn (1978) for further discussion concerning these points.

> 8e_COIIPARISOH OF VOTING SYSTEUS HITH REGARD TC OPTIMAL STRATEGIES

To assess the relative difficulty of deternining optimal strategies under different voting systems, we first note an algebraic rearrangement of Formulá (9) for strategic value:

$$
\begin{aligned}
E\left(c_{i}\right) & =\sum_{j=1}^{K}\left(f_{i}-f_{j}\right) p_{i j}=f_{i} \sum_{j=1}^{K} p_{i j}-\sum_{j=1}^{K} f_{j} p_{i j} \\
& =p_{i}\left(f_{i}-\sum_{j=1}^{K} \frac{p_{i j}}{p_{i}} f_{j}\right) .
\end{aligned}
$$

where

$$
p_{i}=\sum_{j=2}^{K} p_{i j}
$$

is a rough measure of the strength of candidate c_{i} (a stron'g candidate is more likely to get into ties for first place than a weak candidate):

Thus according to the criterion of Table 5, under approval voting, the voter should vote for c_{i} if
(12)

$$
f_{i}>\sum_{j=1}^{K} \frac{p_{i j}}{\underline{X}_{i}} f_{j}
$$

1
whereas a voter under the plurality system should choose that candidate for whom the entire expression in (11) is a maximum. Thus implementation of the optimal strategy is quàlitatively different ana more difficult for the voter to follow under.plurality voting than under approval, voting. In particular, the voter's decision under aperoval voting requires only that, for each $i=1, \ldots, k$, he express a preference between candldate c_{i} and a gamble or lottery involving the \therefore otber candidates (see (12)). The weights (probabilities) for this lottery are related (but not exactly proportional) to the expected electoral strength of the candidates.

The optimal decision for plurality voting requires that the voter attach a numerical quantity to inis intensity of preference between candidate c_{p} and the lottery mentioned above, multiply that quantíty by the measure p_{i} of expected electoral strength, and then choose that candidate for whom this product is maximal. Thus it seers likely that loss of voting power.for the individusl due to deviation from the optimal strategy through ignorance or misunderstanding of that strategy may be more severe under plurality voting than it would be unde'r approval voting. Applying the same reasoning to the other criteria in Table 5, we conclude that determination of the optimal strategy under the Borda system or under cumulative voting is at least as diffi---cult as under plurality voting.

- One desirable feature of a voting system is that it not confuse the voter with superfluous options. We
now observe that certain voting systems reduce to other known systems when non-optimal strategies are eliminated. These latter systems permit no non-optimal strategies other than abstentions.

Fron Table 5, note that, all optimal strategies under cumulative voting consist of casting all one's votes for a single candidate. Since all voters have the same number of votes to cast and none find: it in his interest to divide his vote between two or nare candidates, we may assume, without loss of generility, that each has only one vote. This leaves each voter with precisely the options available under plurality voting, the additional options of cumulative voting are superfluous.

Similarly, all optimal strategies under c̈ardinal rating voting use only the highest and lowest permitted ratings. Since the range of ratings permitted each voter is the same, we may assume that the range is 10,1$]$. Hence the only useful options are casting 0 or 1 vote per candidate, precisely the options available under approval voting. It can be shown (see Merrill (1980)) that all strategies under approval voting are uniguely optimal for sone ratings f_{i} and probabilities $R_{i j}$, with the exception of the strategies of voting for all or none of the candidates. These last two strategies amount to abstention. Finally, it can be shown that the adjusted Borda systera (see Exercise 4), reduces in a similar way to the Borda system.

2. THE CHOICE OF DECISION CRITERIA

Considerable study has been directed to the question of whether voting behavior is best described as a decision under uncertainty (using, e.g., the Savage regret criterion) or as a decision under risk (using expected utilities). If such an analysis is to be descriptive of the real world, it should be based on empirical studies. On the other hand, one objective of political science is to carry out prescriftive analysis, which is in this case the determination of what decision criterion ought to be used by the rational voter.

Mayer and Good (1975) argue prescriptively that the Savage regret criterion in its pure form is inap-. propriate since the voter usually has some information about the likely outcone of the election and because he is not contending against an intelligent opponent. (The step in the Savage procedure of computing the naxinh regret for each possible strategy would suggest that some opponent is attempting to reduce the voter's influence by exploiting his weaknesses. Such an assumption seems unjustified.) These writers suggest that for most voters the true situation lies intermediat \geq between the Savage regret and the expected utility models.

Tallock (1975) points out that the Savage regret - criterion implies that one should vote (under the plurality system) for a candidate with only an infinitesimal chance of winhing (for example, himself) as long as that candidate is his first preference. Tullock believes most people would consider this implication of the Savage regret criterion to be unreasonable.

Ferejohn and Ficrina. (1975) consider deş̀criptive behavior with regard to voter turnout rather than voting strategy. Their analysis, based on o.S. election data, suggests strongly that the Sayage regret criterion is a better model for the decision of whether to vote at all than is"the expected utility model. This module is, of course, concerned with voting strategy, not. with voting turnout.
J. Black-(1978), _using data f.om Canadian elections and surveys of voter intensi iy-of preference, finds support for the expected utality model in determining voting strategies. Specifically he analyses the tendency of a voter to cast a plurality ballot for a party other than his first preference under appropriate circumstances (see Exercise 14), a phenomenon which is predicted by the expected utility model but not by the Savage regret model. Cain (1978), in a similar anaiysis of the 1970 British General election, also finds support for the expected utility model, especially when the election is very close.
a

10. Empirical inpact on pae outcome

of multicandidate bhictions

In our final'section we provide some empirical data concerning the effect various voting systems might have had on an election, assuining voters used their optimal strategies for each system. (See merrill (1980: Section 6).) To do this we employ the "thermometer ratings" (on a scale of 0 to 100) by a national sample (CPS 1972 Américan National Election Study) of 1017 Democrats for the four candidates most active in the 1972 Democratic Presidential primaries (Humphrey, McGeovern, Muskie, and Wallace).

The candidate ratings made by each respondent were ${ }^{4}$ interpretea as voter utilities $f_{i}, i=1, \ldots, 4$. joptimal strategies under the Laplace criterion were determined for the plurality, approval, and adjusted Borda voting systems. Vote totals for the resulting hypothetical elections are presented in Table 6, along with the results of (sincere) cardinal rating voting. (The latter totals were divided by the number of voters (1017) so that the values given represent the average rating for each candidate.)

Table 6

Voting system	Humphrey	Hegovern	Huskie	Hallace
Plurality	299	335	128	- 255
Approval	652	590	461	371
Adjusted Borda	1829	1742	1357	1174
Average Cardinal	62.0	59.5	54.3	46.3
+				-

We note that Bcgovern is the winner under plurality voting, followed by Humphrey, Wallace, and Muskie, in that order. Under each of the alternative voting systems, the centrist candidates Humphrey and Muskie. run stronger, each moving up one position in the order of finish.

The Laplace criterion used to obtain Table 6 assumes in effect that all probabilities $p_{i j}$ are equal. Similar jote totals were obtained using the expected utility criterion for a variety of possible values of the $p_{i j}$. Mose of these scenarios resulted in the saime
orders of finish for the respective voting in Table-6.

11. CONCLUSION

We have investigated a voter's optimal strategy ${ }^{-}$ under a yariety of vcting systems using both criteria under uncertainty (Savage regret and Laplace eriteria) and criteria under risk (the expected utility criterion).0 We have argued that a voter's task of estimating his optimal strategy is least difficult under approval voting. it was found that cumulative and cardinál rating voting recuce to plurality and approval. voting respectively, when superfluous strategies are eliminated: :

- Finally an-empi-rical comparison-of voting systens assuming use of optimal strategies suggests that approval and Borda voting can procuce results very similar to one another (and to that of sincere cardinal rating) but very different fron that of plurality voting..: These alternative systems tend to benefit centrist candidates, while still permitting yoters to express support for more extreme candidates.

12. ADDITIONAL EXERCISES

*Exercise 15 . Construct a payoff matrix for plurality voting, where there are K candidates. (There are K strategies; one for each of the K cancidates. Assume as before that $1=f_{1} \geq f_{2} \geqslant \ldots \geq f_{k}=0$. Show that the maximun regret for strategy $\left(c_{k}\right)$ is the larger of x and y where

$$
x=\max _{i, j \neq k}\left(f_{i}-f_{j}\right)
$$

and

$$
y=2 \cdot \max _{i<k}\left(f_{i}-f_{k}\right)
$$

and $y=0$ if $k=1$. Show that the maximum regfet is minimized when $k=1$.
*Exercise 16. Show that the Laplace procedure applied to plurality voting leads to the same conclusion as the Savage regret method." s
*Exercis: 17. Assume that a voter under cunulative voting has 1.0 vote at his disposal which he can apportion among the candidates, $i . e .$, he can give v_{i} votes to candidate c_{i} bhere $v_{i} \geq 0$ and

$$
\sum_{i=1}^{k} v_{i}=1
$$

Also assume that $1=f_{1} \geq f_{2} \geq \ldots \geq f_{k}=0$. For example, if $K=3$ he might choose $v_{1}=.5, v_{2}=4$, and $v_{3}=.1$. Denoting by $P\left(v_{1}, \ldots, v_{K} ; c_{i}, c_{j}\right)$ the payoff for strategy (v_{1}, \ldots, v_{K}) and contingency $\left(c_{i}, c_{j}\right)$, show that

$$
P\left(v_{1}, \ldots, v_{l i} ; c_{i}, c_{j}\right)=\left(v_{i}-v_{j}\right)\left(f_{i}-f_{j}\right)
$$

and that the regret is given by

$$
R\left(v_{1}, \ldots, v_{K} ; c_{i}, c_{i j}\right)=\left(1-v_{i}+v_{j}\right)\left(f_{i}-f_{j}\right) .
$$

*Exercisel8 For the cunulative voter of Exercise 17, and for. $K=3$ candidates with $f_{2}=r$, show that the optima. Savage regret stratecy is:

$$
v_{1}=1 /(1+r), v_{2}=r /(1+r),
$$

and

$$
v_{3}=0 \text { if. } r \geq .5
$$

$\operatorname{sinc} \dot{u}$

$$
v_{1}=2(1-r) /(2-r), v_{2}=r /(2-r),
$$

and

$$
v_{3}: 0 \text { if } r<.5
$$

*Exercise 19. Assune that a cardinal rating voter filust cast votes v_{i} so that $0 \leq v_{i} \leq 1$, and that $1=f_{1} \geq \ldots$ $\geq f_{K}=0$. For $\mathrm{I} .=3$, show that the optimal Savage regret strategy is to set $v_{i}^{\prime}=f_{i}$ for $i=1,2$, and 2 . Thus for $K=3$, the savage regret strategy is not only sincere but reflects ratings as well as rankings. (In fact, for cardinal rating voting, the savage regret strategy is $v_{i}=f_{i}$ for any number Y of candidates.)

13. REFERENCES

Black, D. (1958) . The Theory of committees and Elections. Cambridge University Press.
Black ${ }^{\text {j }}$. (1978). "The Multicandidate Calculus of Voting: Application to Canadian Federal Elections:" American Journal" of Political Science 22^{*} (August) : 609-638.
Borda, J. (1781). Memoire sur les Elections au Scrutin." Histoire de 1"Academie•Royale des Sciences., Paris.
Brams, S. (2975). Game Theory and Politics. New York: Free Press.

Brams, S. (1978). The Presidential Election Game. Ne: Haven: Yale University.Press.
Brams, S. (1979) . Approval Voting: A Practical Electión Reform for fiulticandidate'Elections." National Civic Revieve for thcoming.
Brams, S. and P. Fishburn (1978). "Approval Votir.g." Amesican Political Science Review 72: 831-847. 1
Brams, S. and P. Fishburn (1979). "Efficacy, Power and Equity in Aproval Voting." To appear.

CPS 1972 American National Election Study. Ann Arbor, Ilichigar: ' Inter-uñiversity Consortiun'for (Political Research.:
Cain. B_{C} (1978): "Stŕategic Voting in Britain." American Journal of Political Science 22 (August): 639-655.

Ferejohn, J. and M. ${ }^{\circ}$ Fiorina (1975). "Closeness Counts only in Horeshoes and Dancing." American Political Science Review 69: 920-925.
Luce, D. and H. Raiffa (1957). Games and Decisions. New York: Niley.
Mayer, L. and I. J. Góod (1975) .. "Is Minimax Regret : Applicable tò Voting Decisions?" American Rolitical Science Review 69: 916-917.

HcKelvey, R..andi P. Ordeshook (1972). "A GeneralTheory of the Calculus of Voting." In J. F. Herndon and J. I.. Bernd, eds., Mathematical Applications in Political Science VI. Charlottesville: University Press of Virginia, pp. 32-78.
Nerrill, S. (1979). "Approval Voting:' A "Best Buy" Method for liulticandidate.Elections?". Hathenatics Hagazine 52 (larch) : 98-1 02.
Herrill, S. (1980). "Strategic Decisions under Onestage llulticandidate Voting Systems." Public Choice 35 (Summer).
Rae, D. (1971). The Political Consequences of Election Lawse New Haven: Yale University Press:
Eullock, G. (1975). "The Paradox of Not voting for
() Oneself." American Poifical Science Reviev 69:. 919.
L.eber, R. (1977). "Conparison of Voting Systens." Forthcoming.

1. Candidate: Zdams Bianco. Cohen Delaney $\begin{array}{lcccc}\text { Plurality: } & 2 & 1 & 1, & 1 \\ \text { Borda: } & 7 & 10 & 9 & 4\end{array}$

- 2. For a four candidate race, the number of Borda votes a voter casts for a candidate is obtained by subtracting the candidate's rank from the number 4. Thus a saall rank sum, corresponds to a large Borda vote. In fact, the total Borda vote for a candidate is obtained by subtracting the rank sum from $4 n$, where n is the number of voters.

3. Candidate:

Yes. Using the method suggested in this exercise, the number of yotes cast by a voter drops by two between each rank, whereas it drops only one ir the Borda system. This expands the candidate totals but does not alter the relative position of those totals (compare vote totals in Exercises 1 and 3).
4. A: 3 , $B: C, C: C, D:-3$.
5. Candidate:

\mathbf{A}	B	\mathbf{C}	\mathbf{D}
22	32	39	17
2	3.	5	2

7., For 4 candidates, if there is no Condorcet winner, no candidate can win more than 2 of the 6 pairuise contests. For the number of victories to add to 6, at least two candidates must each vin 2 contests, so the Copeland rule is inconclusive.
8.

	AB	$A C$	BC
(A)	7	10	0
(A, B;	0	10	3
($A, C)$	7	0	-3
(B)	-7	C	3
(B,C)	-7	-10	0
(C)	0	-10	-3

9.

	$A B$	AC	Haximal BC Regret	
(A)	0	0	3	3
(A, B)	7	0	0	7
(A, C)	0	10	6	10
(E)	14	10	0	14
(B, C)	14	20	3	20
(C)	0	2.0	6.	20

llaxinial regret is leást for strategy (h_{2}.
voter

Laplace	Sevage
(A, B, C)	(A, B, C)
(A, C)	(A, C)
(B, C, D)	(B, C, D)
(C)	(C)
(B, D)	(B, C, D)

Cohen wints under either criterion. The only aifference between the results is that voter : votes for $\mathcal{C} \mathrm{on}^{\circ}$ uncer the Savage regret but not under the Laplace crierion.
12. Plurality:

$$
\begin{aligned}
& \text { By (ICL, U(S) }=E\left(c_{-}\right) \text {were } c_{i} \text { is the candi- } \\
& \text { date voted for. }
\end{aligned}
$$

Curalative:
Agein by (1 C), any vote counts more toward
total utility if pleced on the candidate for \because :or.. $E\left(c_{i}\right)$ is,
Cardinal rating:
If $E\left(c_{i}\right)>0$, the higher the ratirg, the higher the contribution to toial utility. If $E\left(C_{i}\right)$ < C, the reverse is true.
Borda:
Plizcing the most votes on the candicates with the highest strategic valuc maximizes-total utility.

13.	Δ	B	C	D
	J 5	ε	2	-15
	K 10	-18	18	-10
	L - 18	17	5	-1
	11 -9	-10	32	-13
N	N -15	14	-4	

(Divide cell entries by 6 to obtain the values of $\mathrm{E}\left(\mathrm{c}_{\mathrm{i}}\right)$ for each voter.)

Resiutis:	A	B	c	D	Uinner	
Plurality:	0	3	2	0	E	
Cumulative:	0	30	20	0	B	
Approval: - .	2	3	\%	1	C	
- Cardinal rating:	20	30	40	10	C	
Borda:	6	10	10	4	E-C`	tie)

1,4. Optimal strategies are nore often sincere under approval or cardinal rating voting (see the references cited in Exercisel14, and the proposition stated in Exercise 19).
\Rightarrow

15. APPENDICES.

Appendix A. Derivation of the optimal strategy under

 the savage regret criterion for a K-candidate race.- Suppose there are K candiates and, without loss of generality, assume that $1=f_{1} \geq f_{2} \geq \ldots \geq E_{K}=0$. First, in seeking an optinal Savage regret strategy, we may restrict our attention to strategies which include a vote for c_{1} but not for c_{k}.. (For if s is any strategy not including a vote for c_{1}; it is doninatec by the, strategy consisting of voting for the same candicates plus c_{1}. This follous since adding a vote for c_{1} ircreases the payoffs by (1 - Ef $)$ for contingericies (c_{1}, c_{j}) and has no effect for the other contingencies. A similar. argiment shows that c_{k} need not be included in an optinial strategy.)

Next we note that each colum in the payoff matrix (and hence.the corresponding column in the regret natrix) contains only three distinct entries. In fact if we consider the colurin for contingency (c_{i}, c_{j}), the payoffs are:
$\begin{array}{ll}\text { (i) } & \left(f_{i}-f_{j}\right) \\ \text { (ii) } & 0\end{array}$
if $c_{i} \in S$ but $c_{j} \notin S$, or if c_{i} ard c_{j} are either both in or

The corresponding regrets are then
(i') - 0
(ii') $\quad\left(E_{i}-f_{j}\right)$
(iii') $2\left(E_{i}-f_{j}\right)$
for the same three conditions, respectively.
Hence for a particular strategy S, the maxinum regret for S is the lárger of A_{S} and E_{S} where
$A_{S}=\max \left(f_{i}-f_{j}\right) \quad$ under condition (ii), and
$B_{S}=2 \cdot \max \left(f_{i}-f_{j}\right)$-under condition (iil).
We claim that the strategy of voting precisely for those candidates c_{i} for which $f_{i}>.5$ minimizes the

Taxinum reqret ticallusy

$$
\left.s_{0}=\left\{c_{i}=c_{i}\right\rangle .5\right\}
$$

 any other stetagy, thet eithex

$$
\begin{aligned}
& \text { Gane } 2 t \text { There exists } f_{k} \text { with } f_{k} \leq \text {.5. }
\end{aligned}
$$

For case 1 ,

(Maximua regret for ti) $\geq A_{T}$

$2 f_{k}-f_{k}$

- $\frac{f_{k}}{z}-0>0.5$
since $C_{K} \not T$.

For case 2,

(Maximum regret for Ty \geq.
2. ${c_{i}, \max _{j} \in T}\left(f_{i}=f_{j}\right)$
$2 f_{1}-f_{k}$
$=1-E_{k} 2.5$,
since $c_{1} \varepsilon_{\text {T. }}$
Hence the maximum regret for S_{0} is less than or equal to the maximum regret for any other permissible strategy for approvil voting. (Any candidate for which $f_{i} \equiv .5$ can be included in the strategy without aitering the maximum regret.) Thus S_{0} is the optimal Savage regret strategy.

Student:- If you have trouble with a specific part of this unit; please fill out this form and take it to your instructor for assistance. The information

 you.give will help the author to revise the unit.Your Name

Unit No.

Instructor: Please indicate your resolution of the difficulty in this box.
Corrected errors in materials. List corrections here:Gave student better explusation, example, or procedure than in unit. Give brief outline of your addition here:
\qquad Unit iNo. \qquad Date \qquad
Institution
Course No. \qquad
Check the choice for each question that comes closest to your personal opinion.

1. How useful was the amount of detail in the unit?

Not enough detail to understand the unit
Unit would have been clearer with more deitail
Apprópriate amount of detail
__Unit was occasionally too detailed, but. this was not distracting Too much detail; I was often distracted
.2. 'How helpful were, the problem answers?
Saniple solutions were too brief; I could not du the intermediate steps __Sufficient information was given to solve the problems
_ Sample solutions were too detailed; I didn't need them
3. Except for fulfiliing the prerequisites, how much did you use other sources (for example, instructor, friends, or other boojes) in order to understand the unit?
\qquad A Lot \qquad Somewhat
A Litele
Not at all
4. How long was this unit in comparison to the amount of time you generaliy spend on a lesson (lecture and homework assignment) in a typical meth or science course?
$\ldots-1$
Much
Longer

Somewhat About. Somevhat Longer

About . Somewhat \qquad -
5. Were any of the following parts bf the unit confusing or distracting? (Check $a s$ many as apply.)
\qquad Prerequisites
1.

Statement of skills and concepts (objectives)
Paragraph headings Examples
Special Assistañce Supplement (if present)
Other, please explain
6. Were any of the following parts of the unit particularly helpful?. (Check as many as-apply.)

Prerequisites
Statement of skills and concepts (objectives)
Examples
Problems
Paragraph headings
Table of Contents
Special Assistaince Supplement (if present)
Qther, please explain
Please describe anything in the unit that you did not particulariy like.

Please describe anything that you found particularly helpful. (Please use the back of this sheet if you need more space.)

Us. Depantmeict of education MATTONAL INSTITUTE OF EDUCATION EDUCATHNAL RESOURCES INFORMATION

MODULRS AND MONOGRAPFB IN UNDERGNADUATE E MATHEMATICS AND ITS APPLICATIONS PROJECT

AN APPLICATION OF YOTING THEORY to congress
by Jemes M. Endiow

APPLICATIONS OF DECISION THEORY

AND GAME THEORY TO AMERICAN POLITICS
edc/umap/55chapel st./newton.mass.02160VOTING
an application o̊ voting theory

by

James M. Enelow
Department of Political Science State University of New York Stony Brook, New York 11794
to congreess.

This document has been reproduced as received from the person or orpanization Pripinsting it.

$$
\begin{aligned}
& \text { I Minor changes have i } \\
& \text { teproduction quality. }
\end{aligned}
$$

"PERMISSION TO REPRODUCE THIS MATERIAL IN MICROFICHE ONLY HAS BEEN GRANTED BY

- Ponis of view or opmons stated in this docy. ment do not necessarily represent oticical NIE position or policy
!

1. INTRODUCTION 1
2. AN EXPECTED UTILITY THEORY OF SOPHISTICATED23. THE MATHIAS AMENDMENT TO THE 1966 CIVILRIGHTS BILL7
3. THE SALT II TREATY 11
4. CONC̨LUSION 15
5. ANSWERS ${ }^{\circ}$ TO EXERCISES 16

Intermodular Deacription Shbet: UMAP Unit 386
Titie; NN APPLICATION OF VOTİNG THEORY TO CONGRESS

Author

 James M. EnelowDepartment of Political Science
State Jniversity of New York
Stony"Brook, New York 11794
Revien Stage/Date: $\operatorname{III} \quad 4 / 25 / 80$
Classification; APPL DECISION THEORY \& GAME THEORY/ANER POL
Prerequisite Skills: ${ }^{\text {o }}$

1. Hivh school algebra.

2-0. Elementary probability theory.
3. Elementary utility theory.
4. Ability to understand tree diagrams.

Output Skills:

-1. 7.gain an understanding of how a simple theory of voting \therefore ․ . - be used to analyze strategic votiff in Congress.

Otheŕ Related Units

MODULES AND MONOGRAPHS IN UNDERGRADUATE MATHEMATICS AND ITS APPLICATIONS PROJECT (UMAP)

The goal of UMAP is to develop, th.rough a community of users and developers, a system of instructional modules in undergraduat mathematics and its applications which-may be used to supplement existing courses and from which complete courses may eventually b built.

The Project is guided by a National Steering Committee of mathematicians, scientists, and educators. UMAP is funded by a grant from the National Science Foundatiun to Education Development Center, Inc., a publicly supported, nonprofit corporation engaged in educational research in the U.S. and abroad.

PROJECT STAFF

Ross L. Finney
Solomon Garfunkel
Felicia DeMyy
Barbara Kelczewski
Paula M. Santillo
Donna DiDuca
Janet Webber
Zachary Zevitas

Director

- Consortium Director

Associate Director
Coordinator for Materials Production
Assistant to the Directors
Project Secretary
Word Processor
Staff Assistant. ì
NATIONAL STEERING COMMITTEE
W.T. Martin (Chair)

Steven J. Brams
Llayron Clarkson
Ernest J. Henley
William Hogan
Donald A; Larson
William F: Lucas
R. Duncàn Luce

George M. Miller
Frederick Mosteller
Walter E. Sears*
Ceorge Springer
Arnold A. Strassenburg
Alfred B. Willcox ,
M.I.T.'

New York' University
Țexas Southern University
University of youston
Harvard University
SUNY at ouffalo
Cornel: University
Harvard University
Nassau Community College
Harvard University
University of Michigan Press
Indiana University
SUNY at Buffalo
Mathematical Association of America

The Project,would like to thank Thomas E. Elsner of General Motors Institute, Flint, Michigan, William A. Hansen of DELTAK, Inc., Oak. Brook, Illinois; Harold Hanes of Earlham College, Richmond, Indiana, and members of the UMAP Political Science Panel for their reviews, and all others who assisted in the production fo this unit.

This material was prepared with the partial support of National Science Foundation Grant No. SED76-19615 A02. Recommendations expressed are those of the author and do not necessarily reflect the views of the NSF or the copyright holder."

It is a conimon observation that voting in the United States Congress is frequently strategic. This observation is asually interpreted to mean that a congreseman's vote on a legislative proposal may' be guided by strategic considerations and not strictly by his own preferences regarding the matter. For example, suppose a. Senator prefers the originally negotiated Salt II treaty, to no treaty at all, "but would like to see the number of inissiles allowed under the provisions of the treaty reduced. Assume, now, that such an amendment were offered. Should the Senator necessarily vote for it? If he perceived thát adoption of the amendment would bring about almost certain rejection of the treaty by the Soviet Union, he might vote against it. On the other hand, if he-perceived that adoption of thif amend1. ment would lessen but not destroy the chances of the Ereaty's acceptance by the Soviets, he might accept the risk of rejection and vote for the amendment.

The above example captures many features of the voting model that will be developed in this module. . The purpose of this model will be to explain and predict voting on congressional amendments. We shall focus our attention on two types of amendments--those which are seen as increasing and those which are seen as decreasing the chances of a bill's passage. The first type Will be called a "saving" amendment and the second type a "killer" amendment. We will assume that a congressman's vote on either of these two types of amendment is based on two factore--his preferences regarding the possible outcomes once the final vote on a bill, is taken andihis assessment of how the amendment in question wili affect, the likelihood of the bill's passage. These two factors will allow us to construct a lottery theory of strategic voting that has elsewhere been called expected utility sophisticated (EUS) voting. 1 After showing how this theory works, we will apply it to an actual case of a saving amendment--the Mathias amendment to the 1966 Civil Rights bill. He shall also discuss killer amendments to the Salt II treaty.

2: All EXPECTED UTILITY THEORY OF SOPHISTICATED VOTING
Let us initially assume a simple situation-an amendment to a bill is voted on by n voters followed by a vote on the bill itself. The following tree diagrams the structure of these two votes.

Figure 1.
Initially, the amendment is voted on, providing the voter with two choices: "yea" (Y) or "nay" (N). If a majority of the n voters vote F (which riay be a special majority, such as ($2 n$)/3n), the next vote is a contest between-the ariended bill and no bill and, again, the voter can vote either Y or ii. On the other hand, if a majority of the n voters vote N on the anendment, the next vote is a contest between the unamended bill and n bill, and, once again, the voter can vote Y or s:. Therefore, after the second vote is taken, three outcomes may result--the amended bill (ab), the unamended bill (b), and no bill (ϕ).

This descriftion outlines the bare fstructure of the voting process as seen by the voters. He assume that each voter can rank order the three possible outcones we have described from best to worst. This ranking will be termed his preference order. Assume that no voter is incifferent between any two of these three outcomes. This means that the voter can rank these outcomes in 3! $=6$ possible ways. This listing is given in Figure 2.

	Preference..Type				。
1	2	3	4	5	6
b	b	$a b$	ab	\dagger	¢
ab	¢	b	${ }^{\circ}$	b	ab
¢	ab	¢	b	ab	b

Figure 2.
oLet us now make another assumption--that each voter's preferences are sufficiently "consistent" to be reprenented by cardinal utility numbers. These numbers measure the "strength" of an individual's.preferences, cannot be compared across individuals, and can always be normalized so that an individual's first ranked outcome can be assigned the number " 1 " and his worst outcome the number " 0 ". These numbers are also assumed to satisfy the "expected utility hypothesis," which will be explained shortly. The utility of the $i^{\text {th }}$ voter ($i=1$, n) for the three outcomes of the voting process is, then, $u_{i}(a b), u_{i}(b)$, and $u_{i}(\phi)$, these numbers all being contained in the interval $[0,1]$.

The final piece in the model has been alluded to earlier. This is each voter's subjective probability estimates of two events--that the amended bill will pass and that the unamended bill will pass. In the case of our Salt II example, the term "pass" could be replaced by some other 'term denoting acceptance by the treaty's signatories. However, we shall keep matters simple for now and consider the term "pass" to apply to majority acceptance.by the n members of the voting body. We are assuming, then, that each voter forms an estimate of the likelihood that the amenced bill will pass and an estimate of the likelihood that the unamended bill will
pass. These estimates may vary from one voter to the next and are based on whatever information each voter possesses concerning the preferences of other voters and his assessment of their voting intentions. Such information is assumed to be imperfect. Further, voters may share whatever information they possess, but they are assumed to make their voting decisions independently of one another. In other words, the voting game is noncooperative.

Let us now see how these probability estimates can be incorporated into the tree diagram of Figure 3, whiere p_{i} denotes the estimate of the $i^{\text {th }}$ voter ($i=1, \ldots, n$) that ab will pass ($0 \leq p_{i} \leq 1$) and q_{i} the estimate of the $i^{\text {th }}$ voter that b will pass $\left(0 \leq q_{i} \leq 1\right)$. The esiimates of the $i^{\text {th }}$ voter that $a b$ and b will fail are 1 p_{i} and $1-q_{i}$, respectively. We are now ready to state the fundamental hypothesis of our model. We assume that the $i^{\text {th }}$ voter sees his choicerof voting X or N at any

Figure 3.
point in the voting process as a choice between the two lotteries associated with passage or failure of the issue being voted on at that point. Thus, if L_{1} ' $=\left(p_{i} a b,\left(1-p_{i}\right) \phi\right)$ and $L_{2}=\left(q_{i} b,\left(1-q_{i}\right) \phi\right)$, then the $i^{\text {th }}$ voter votes Y on the amenonent if he prefer's L_{1} to L_{2} and 1 'otherwise, where L_{1} is a gamble that yields ab with probability F_{i} and ϕ with probability l- F_{i}, and L_{2} is interpreted likewise. To determine which lottery he prefers, we employ the expected utility hypothesis which statés that he prefers the lottery whose utility expected valưe is greater. More formally, the i th voter votes Y on the amendment if and only if

$$
\begin{align*}
u_{i}\left(L_{1}\right) & >u_{i}\left(L_{2}\right) \rightarrow \\
p_{i} u_{i}(a b) & +\left(1-p_{i}\right) u_{i}(\phi) \tag{1}\\
>q_{i} u_{i}(b) & +\left(1-q_{i}\right) u_{i}(\phi) .
\end{align*}
$$

We shali explore the implications of expresion (1) monentarily but, first, note that vcting on final passage simply involves a preference comparison of the two remaining possible outcones. On the other hand, if two aniendments were being voted on serially, voting on the first amendment would involve the comparison of two compound lotteries, i.e. each lottery would be a lottery between two lotteries. An example of a compound lottery will be given later.

Let us now draw out some implications fron expression (1) for voting on "saving" and "killer" amendments. We shall define these two types of amendments as follows. If $p_{i}>g_{i}$, then voter i sees the amendment as "saving" the bill, while if $q_{i}>p_{i}$, voter i sees the amendment as a "killer." This reflects the idea that a saving amendment is one which is seen as increasing the chances of a bill's passage, while a killer amendment is seen as decreasing these chances. Under what circumstances, then, will a voter of some given preference
type vote y or N on'a "saving" or "killer" amendment? Let us start with voters of preference type \#1. For simplicity, we shall sometimes use a double index to indicate a voter's preference type. Thus, a generic member i of preference group ${ }^{1}$ will be labelled il.

Under what conditions, then, will voter il vote Y on a saving amendment? It is a straightforward exercise to demonstrate that if

$$
u_{i 1}(a b)>p_{i i}
$$

then voter il will vote Y, while if the inequality is reversed he will vote H .

mercimele Prove this.

Suppose, now; that $p_{i 1}=2 q_{i 1}$. Then, since $q_{i l} / p_{i l}=$.5. $\mathrm{u}_{11}(\mathrm{ab})$ must eaceed .5 for il to vote Y on the amendment. ' If $p_{i l}=3 q_{i 1}$ then $u_{i l}{ }^{\prime}(a b)$ must exceed .33. In other words, the more the voter thínks the! amendment increases the chances of the bill's passage, the more'likely he is to vote for it. Of colurse, the reverse also holds. If $p_{i l}=1: 2 \mathrm{q}_{i 1}$, then $\mathrm{u}_{\mathrm{il}}(\mathrm{ab})$ must exceed . 83 for il to vote Y on the amendment.

Under what conditions will voters of preference types 12 - $\$ 6$ yote $¥$ or n on a saving amendment? Interèstingly, algebraic manipulation reveals that voters of preference types. 2 and $\$ 5$ will alpays vote N on a saving amendment, while voters of preference types o 3 and 14 will always vote Y. . For example, for a voter of preférence type $\$ 2$ to yote Y on a saving amendment, $\left(1-p_{i 2}\right) u_{i 2}(\phi)$ must exceed $q_{i 2}+\left(1-q_{i 2}\right) u_{i 2}$ ($\$$). But, since $p_{i 2}>q_{i 2},\left(1-q_{i 2}\right) \geqslant\left(1-p_{i 2}\right)$, so this is impossible. Only voters of preference type $\$ 6$ are like voters of preference type σ_{1} in being able to vote either way. If

$$
u_{i 6}(a b)>1-\frac{q_{i 6}}{P_{i 6}}
$$

then voter $i 6$ will vote Y on a saving amendment, while if the inequality is reversed he will vote N .

Exexcise 2. If
 $$
\frac{q_{i 1}}{P_{i 1}}=\frac{q_{i 6}}{P_{i 6}}
$$

for some il and i6. is it possible for them to both vote the same way on a saving ameñdaent?

It is not difficult to. see that othe more an amendment increases the chances of a bill's passage, the less likely i6 is to vote for it. For example, if $\mathrm{p}_{\mathrm{i} 6} \stackrel{\text { i }}{=}$ $3 \mathrm{~g}_{\mathrm{i}}$, then u_{i} (ab) must exceed $: 67$ for 16 to vote Y on the amendment.

Let us now discuss voting on killer amendments. It is again a straightforward algebraic exercise to establish the conditions under thich menbers of each preference group will vote Y or N. Now; members of preference groups 1 and 2 invariably vote N and members of preference groups 4 and 6 invariably vote Y. Again, to compute one example, for a voter of preference type \#l to vote Y on a killer amendinent, $p_{i l} u_{i l}(a b)$ must exceed $\dot{q}_{i l}$. But $q_{i l}>p_{i l}$ and $l^{\text {! }}>u_{i l}(a b)$, so this is impossible. Hoंvever, members of preference groups 3 and 5 can vote either way. If

$$
\frac{p_{i 3}}{q_{i 3}}>u_{i 3}(b)
$$

voter i3 will vote Y on a killer amendment, and if the lineguality is reversed he will vote N. Likewise, if

$$
1=\frac{p_{i 5}}{q_{i 5}}>u_{i 5}(b)
$$

voter i5 will vote Y on a killer amendment, and if the inequality is reversed he will vote N .

[^1]5

3. crat mapaias amendupar to the 1966 crivil bights bill

We will now see how well our theary can predict and explain voting on a real example of a saving ammanent. The 1966 Civil Rights bill (HR 14765), as reported by the House Judiciary Committee, cọntained a controversial open housing provision, known officially as Title IV., The intent of the Mathias amendment offered on the Hôuse floor by Rep. Hathias, was to weaken this section of the bill by allowing a homeowner to provide a real estate broker with discriminatory instructions, if the broker did not solicit them.

This amendment was offered in an attempt to save Title IV from being stricken from the bill. The two votes that fit the requirements of our nodel are, therefore, the vote on the Mathias amendment and the vote on a motion by Rep. Hoore to recommit the 1966 Civil Rights bill to the Judiciary Committee with insitructions to delete Title IV.' A Y vote on the motion to recommit is a vote to delete Title IV and a N vote is a vote to leave Title IV in the bill. The voting tree, therefore, looks like Figure 4.

Figure 4.
The three outcomes are: Title IV with the Mathias amendient (ab), Title IV without the Hathias amendment (b), and the 1966 Civil Rights bill without Title IV (b).

We will assume that all voters saw the adoption of the Mathias amendment as increasing the chances that Title IV would be! saved, thus enabling us to apply our earlier predictions about voting on a saving aniendment to all members of the House. In ordèr to do so,
however, we need some neasure of each Representative's preferences regarding the three outcomes shown in
Figure 4. The measure ve wili use (employed in Table

1) is the 8 "right" votes cast by each Representa-tive according to Anericans for Democratic Action (ADA) on 17 selected votes in i 966 . ADA is a liberal interest group particularly identified with advocating a stronger federal role in domestic areas such as housing and civil rights.

We shall assume that type 1 voters have the highest ADA scores and type 6 voters the lowest. This folious from the rankings given the three possible outcomes by these voters. Type 1 voters rank the stronger open housing section first, the weaker ofen housing section second, and no open housing section last. Type 6 voters rank the three outcomes in reverse order. Thus, type 1 voters are in complete agreement with ADA's preferences and type 6 voters are in complete disajreenent. Type 2 voters should also have high ADA scores, although their attitude is "all-or-" nothing." Type 3 and 4 voters should have intermediate scores, since they rank the waker open housing section first, and type 5 voters should have low ADA scores, like type 6 voters.

The follöving is a list of hev ve expect the members of each preference group to vote. Since the liathics amendment passed, the second vote was a contest between $a b$ and (recall thát a \mathbf{Y} vcte on recommittal is a vote for ϕ). :

Predicted Voting on Rathias Amendment and Moore hotion.			
	re	Type	
2	3	4	5
NY . *	Yi	Yi,	NY

Figure 5
Table 1 presents our findings. Only type 1 voters are predicted to vote NN and only type 6 voters are predicted to vote YY. Interestingly, of the 26 voters who voted NN; 19 had scores between 80 and 100, while of the 40 voters who voted $Y Y, 24$ had scores between 0 and

19. This corresronds well with our. predictions. It is also interestind, to note that the dispersion of amendment votes is greatest for voters with high and low ADA scores. This conforms with our prediction that only type 1 and type 6 vot'ers can vote either way on the amendment.

Note also that if type 1 voters are assumed to. have ADA scores of $80-100$ and type 6 voters ADA scoreso of 0-19, only 29 out of 289 voters with such scores voted contrary to che predictions of our model. Our model, therefor' $=$, has 2903 success rate with these voters.

As for voters in the 20-79 range, 648 of them voted YN. This leads us to believe that most of then vere type 3 -or type 4 voters. If the three outcones were arrayed on a single horizontal diriensior from left to right in the order $b-a b-\phi$ and a second vertical dimension vere used to measure strength of preference from last to first, it would be possible to represent each voter's preference order by 3 points in a two-.. dimensicnal coordirate syster. If these points were then connected in left to right order each preference order would correspond to a preference curve.

Exercise. 4. Draw a graph of all 6 preference curves.

A preference curve is single-peaked if, looking from left to right, it.always rises or 'falls, or it rises to a coirt and then falls, doing so no fore than once. Eased on this definition, only type $1,3,4 ;$ and 6 voters have single-peaked preference curves. But, our data suggests that most voters held one of these 4 preference types, so our conclusion is that most Representatives held single-peaked preferences with respect to an underlying dimension that would seem to measure degree of federal contrcl over private housing.
an interesting finding emerges from reading the flcor debate on the llathias aniendment. Among selfidentified type 1 and type 6 voters, some offered voting justifications tased on substantive considerations and others offered justifications based on tactical considerations. Clearly, a substantive jus-
tification is one based on the magnitude of u_{i} (ab), while a tactical justification is based on the ratio of q_{i} to P_{i}. Thus, a type 1 vote such as Rep: Albert ($\mathrm{D}-$ Okla., ADA-82A) justified a y vote on the hathids amendment, by calling the amended Title IV "an important step forward. ${ }^{2 \cdot}$ Recalling that a type 1 voter casts a Y vote on a saving amendment if and only if

$$
u_{i 1}(a b)>q_{i l} p_{i l}
$$

Albert's justification is clearly consistent with our model. On the other hand, a tactical-justification by (voter for a vote is provided by Rep-Diggs (D-Mich., ADA-82\%), who termed the amendment a
"tactical concession." Diggs makes clear his limited enthusiasm for the Mathias amenoment, but recognizes that there are "not enough affirmative votes" ${ }^{3}$ for Title IV without it. Thus, for Diggs, $g_{i 1} / p_{i l}$ would appear to be near zero.

Exercise 5s How would you interpret the justificatory intent of Rep. Poff ($R-V_{a}$, ADA-0\%) , a type 6 voter, who stated "thet. any liberal who votes for the Mathias anendment will be indicted by liberals for having "gutted" Title IV...." ${ }^{4}$

Other examples of substantive and tactical justifications given by type 1 and type 6 voters for Y and : votes on the Mathias aniendment are easy to come by. Thus, we find not only a good rate of predictive success for our nodel, but also a striking degree of verisimilifude with the actual pronouncements of the congressmeh themselves.

4. THE SALT II TREATY

In this final section of the module we shall employ our model to discuss killer amendments to the Salt II treaty. We shall consider a killer amendment to the treaty to be one which all Senators see as defreasing the chances of the treaty's acceptance-not by the Senate, however, but by the Soviet Union. This case is similar to the one which occurred with respect to the Panama Canal treaties, where a host of amend-
ments was offered not to bring about Senate rejection of the treaties, but to bring about rejection of the treaties by Pariama. If anything, such amendments increase the chances of acceptance by the senate since they typically involve changes that favor united states interests. However, for now, we will only consider the effect of a salt II treaty amendment on the chances of , the treaty's acceptance by the soviets.'

Before becimning, it is important to distinguish an amendment to the treaty from a reservation or understanding. An amendment changes the actual text of the treaty, while a reservation or understanding does not. Thus, the Soviet warning in the summer of 1979 (imnediately after the salt II treaty was signed), that changes in the treaty would bring about "a fantastic situation" 5 was aimed at preventing treaty amendnents.

Let. us now analyze the strategic environment surrounding a killer amendment to the salt II treaty. Recalling our earlicr results, figure 6 lists the expectec votes for menbers of each preference type.

	Voting on killer Amendment Freference Type				
-	1	2	3	4	5
Vote	$1!$	N	Y	\mathbf{Y}	Y
			r		or
			N		\ldots

Figure 6
Recall also that if

$$
\frac{p_{i 3}}{q_{i 3}}>\dot{u}_{i 3}(b)
$$

voter i3 will vote Y, while.if the ineguality is reversed he will vote N. On the other hand, if

$$
1-\frac{p_{i 5}}{q_{i 5}}>u_{i 5}(b)
$$

voter is will vote Y, while if the inequality is reversed he will vote N.- The example give in the introduction to the module is clearly one of a type 3
voter faced with the problem of how to vote on a killer amendient to the Salt II treaty.

Our results indicate; therefore, that Soviet warnings to the Senate against amending the Salt II treaty could only affect the votes of Senators with type 3 or type 5 prieferences." The question thenbecomes: were Soviet threats rational from the standpoift of persuading these Senators to vote N? This is not an easy question to answer. By seekir.g to imply that p_{i} was near zero, the Soviets were creating a situation in which type 3 voters would vote N but type 5 voters would vote Y on a treaty amendment. If the Soviets estimated that the type 3 group was larger than the stype 5 group, this tactic would appear to make sense. Certainly it would be superior to conveying the impression that v_{i} was near one. However, our analysis tells us that type 3 votes are not necessarily gained at the expense of type 5 votes. If instead of a tactical approach to influencing Senators, the Soviets had employed a substantive approach, it may have been possible (at least before other events intervened) to persuade both types of voters to vote against any treaty amendments. The way to do this would have been to persuade both types of voters of the attractiveness of the unamended treaty. In this way, $u_{i 3}(b)$ and $u_{i 5}(b)$ would increase and thus so would the chances of voting N on a treaty amendment for both types of voters.

Howeyer, if the Soviets judged that there were very few Senators with type 5 preferences compared to those with type 3 preferences (a not unreasonable assumptionsince preference type $\# 6$ would seem more appropriate for a foreign policy conservative), their 'approach would have cost them few votes. From this. standpoint, therefore, the Soviets were acting in a manner that was clearly purposeful, despite the backlash evidenced in Senator Howard Baker's reply that "the Senate will work its will.., 6 without that advice from Russia. ${ }^{* 6}$

Exercieq 6. Assume Senator Baker has type 4 preferences. Would it be rational for him to offer a killer amendment to the Salt II treaty?

54

On the other hand, if proponents of treaty amendments shared the Soviet perception that otype 3 voters were the proper focus of the ratification) battle, then they should have been tryirg to make p_{i} appear as large as possible. From this perspective the statement by Lieut. Gen. Fiwari J. Rowny, one of Salt II's negotiators, that amendments would not kill the treaty because "they need it more than we do"7 was a rational counter-strategy to use against the Soviets.

Thus, our model gllows us to understand the battle that took place in the summer of 1979 between the Soviet Unior and certair members of the U.S. Senate over amendments to the Salt II treaty. Soviet warnings were ruch more than a public expression of irritation. Instead, they represented a clear and deliberate plan tc influence Senators' votes.

As a final exercise, let us incorporate inco our model the statement miade at the beginning of this section that a treaty amendment can be a killer with respect to the treaty's siqnatories but also be a saving amendment from the standpoint of Senate o ratification. Figure 7 expands our model to acconodate a "soving-killer" amendment.

Figure 7.
The new division in the tree represents the Soviet decision to accept or reject the amended treaty. It is assumed that acceptance of the unamended treaty is automatic, since the Soviets signed the treaty in this. form. Now, assume p_{i} and q_{i} represent the two ratifi-
cation probabilities for the amended and unamended treaties as seen by voter i and that $p_{i}>q_{i}$ for all $i=1, \ldots . n$ (ratification of the treaty requires a two-thirds. majority). Let r_{i} represent the probability as seen by voter i that the Soviets will accept the amended treaty and assume that $q_{i}>r_{i}$ for all $i=1$, n.

The two lotteries that each voter must compare before voting on this "saving-killer" amendment are then ($p_{i} r_{i}$ ab, $\left(1-p_{i} I_{i}\right)$) and ($\left.\dot{p}_{i} b_{j}\left(1 /-q_{i}\right) \dot{j}\right)$. However, since $q_{i}>p_{i} r_{i}$, a "saving-killer" amendment is really just a killer amendment, (since $q_{i}>r_{i}, 2$ $p_{i} r_{i}$) and so needs no special treatment. However, suppose the prospects for ratifying the unamended treary become suddenly dim and $r_{i}>g_{i}$ for all i. Then clearly, $p_{i} r_{i}$ may be, greater or less than q_{i} and the analysis becomes more complicated. In any event, the point of this small exercise is to show that our voting model can be expanded to represent more complex decision problems.

Exercise_7. Draw a voting tree to represent the situation where two amendents to a bill are voted on ferially followed by a vote on final passage of the bill. What are the two lotteries that each voter must compare before voting on the first amendment?,

5. CONCLUSION

The point of this module has been to develop a simple lottery theory of strategic voting to explain how preferences and suojective probability estimates ϕf how much an /amendment can help or hurt a bill combine to determine how a congressman will vote on a legislative amèndment. We have focused on two types of amend-, ments--those that a voter thinks will help save a bill and those that a voter thinks will help kill a bill-and showed that on each type of amendment only two of the six possible preference types can vote either Y or N_{1}, depending on the values taken by the three variables that determine the voting decision.

We then applied our theory to voting on a real ". example of a saving amendment, the Mathias amendment to
the $1 / 966$ Civil Rights bill, and showed that our data agreed substantially with the theory's predictions and also that the model accurately represented the verbal justifications offered by many Representatives. As an example of a killer anendment, ve discussed amendments to the Salt II treaty and showed that our model could illuninate the debate carried on between the Soviet Union and some members of the U.S. Senate in the sumner of 1979 . We also showed how our model could represent tl.e savirg and liller aspects of a salt II amendrient. Thus we demonstrated the model's flexibility.

In closing, this module denonstrates that a simple model can capture a great deal of real world.complexity, while simplifying reality sufficiently to make etraightforward precictions and lay bare the underlying logic of tre phenomenon bein'g modelled. This is the purpose of any rigorous scientific investigation and it has been our purpose here.

1. Substituting $u_{i l}(b)=1$ and $u_{i l}(\phi)=0$, we have from expression (l)/r $p_{i l} u_{i l}(a b)>q_{i l}$. Dividing through by $p_{i l} y$ ields $u_{i l}(a b)>q_{i l} / q_{i 1} \cdot$
2. Yes. For example, if $\dot{q}_{i 1} / p_{i l}=q_{i 6} / p_{i 6}=.5$; then il and i6 will both vote Y if $u_{i 1}(a b)$ and $u_{i 6}(a b)$ exceed . 5 .
3. $i 3$ - wotes N and i5 votes Y .

4. His intent is to convince type i voters that $u_{i}(a b)$ is near zero so that $\mathrm{G}_{\mathrm{il}} / \mathrm{p}_{\mathrm{il}}$ will exceed $\mathrm{u}_{\mathrm{il}}(\mathrm{ab})$ and they will vote N, thus increasing the chances of $\boldsymbol{\phi}_{\mathrm{f}}$ Poff's first preference:
5. Yes, since. is preferred to b.

Assuming the probability estimates are as labelled above, the two lotteries are
$\left(t_{i}\left(p_{i} a_{1} a_{2} b,\left(1-p_{i}\right) \phi\right),\left(1-\dot{t}_{i}\right)\left(q_{i} a_{1} b,\left(1-q_{i}\right) \phi\right)\right)$ and
$\left(u_{i}\left(r_{i} a_{2} b,\left(1-r_{i}\right) \phi\right),\left(1-u_{i}\right)\left(s_{i} \neq,\left(1-s_{i}\right) \phi\right)\right)$
Z. NOTES

1. James A. Eneloẁ, "Saving Ariendments, Killer Amendments, and a §ew Theory of Congressional Voting," paper delivered at the American Political Science Association lleetings, Washingtọn, D.C.,August 31 - September 3, 1979.
2. Congressional. Record (CR) H 18727, August 9, 1966 .
3. CRe H 18128 , August 3, 1966.
4. CRe H 18124 , August 3, 1966.
5. New York Times. July 1; 1979.
6. Ibid..
7. New York Times, July'15, 1979.

STUDENT FORM 1

Student: If you have trouble with a specific part of this unit, please fill out this form and take it to your instructor for assistance. The information you give will help the author to revise the unit.
Your Name

Unit No.
del Exam Problem No. \qquad
Text
Problem No. \qquad

Instructor: Please indicate your resolution of the difficulty in this box.
Corrected errors in materials. List corrections here:Gave student better explanation, example, or procedure than in unit. Give brief outline of your addition here:

\bigcirc
Assisted student in acquiring general learning and problem-solving skills (not using examples from this unit.)

STUDENT FORM 2
 Unit Questionnaire

EDC/UMAP 55 Chapel St: Newton, MA 02160

Hame \qquad Unit No. \qquad Date \qquad
Institution \qquad Course No. \qquad
Check the choice for each question that comes closest to your personal opinion.

1. How useful was the amount of detall in the unit?

Not enough detail to understand the unit
__Unit would have been clearer with more detail
Appropriate amount of "detail
__Unit was occasionally too detailed, but this was not distracting Too much detail; I was often distracted
2. How helpful were the problem answers?

Sample solutions were too brief; I could not do the intermediate steps Sufficient information was given to solve the problems
TSample solutions were too detailed; I didn't need them
3. Except for fulfilling the prefequisites, how much did you use other sources (for example, instructor, friends, or other books) in order to understand the unit?
\qquad A Lot

Somewhat
A Little
Not at all
4. How long was this unit in comparison to the amount of time you generally spend on lesson (lecture and homework assignment) in a typical math or science eourse?

5. Were any of the following parts of the unit confusing or distracting? (Check as many as apply.)

Prerequisites

Statement of skills and concepts (objectives)
Paragraph headings
Examples
Special Assistance Supplement (if present)
Other, please explain
6. Were any of the following parts of the unit particularly helpful? (Check as many as apply.)

Prerequisites
___Statement of skills and concepts (objectives)
___Examples
_TProblems
__Paragraph headings
Table of Contents
___Special Assistance Supplement (if present)
___Other, please explain
Please describe anything in the unit that you did not particularly like.

Please describe anything that you found particularly helpful. (Please use the back of this sheet if you need more space.)

[^0]:

 * Reproductions supplied by EDRS are the best that can be made * * from the original document. *

[^1]: Exercize 3. Assume $p_{i 3}=p_{i 5}=0$. How will i3 and i5 vote on the amendment?
 amendment?

